Highest Common Factor of 872, 617, 515 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 872, 617, 515 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 872, 617, 515 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 872, 617, 515 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 872, 617, 515 is 1.

HCF(872, 617, 515) = 1

HCF of 872, 617, 515 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 872, 617, 515 is 1.

Highest Common Factor of 872,617,515 using Euclid's algorithm

Highest Common Factor of 872,617,515 is 1

Step 1: Since 872 > 617, we apply the division lemma to 872 and 617, to get

872 = 617 x 1 + 255

Step 2: Since the reminder 617 ≠ 0, we apply division lemma to 255 and 617, to get

617 = 255 x 2 + 107

Step 3: We consider the new divisor 255 and the new remainder 107, and apply the division lemma to get

255 = 107 x 2 + 41

We consider the new divisor 107 and the new remainder 41,and apply the division lemma to get

107 = 41 x 2 + 25

We consider the new divisor 41 and the new remainder 25,and apply the division lemma to get

41 = 25 x 1 + 16

We consider the new divisor 25 and the new remainder 16,and apply the division lemma to get

25 = 16 x 1 + 9

We consider the new divisor 16 and the new remainder 9,and apply the division lemma to get

16 = 9 x 1 + 7

We consider the new divisor 9 and the new remainder 7,and apply the division lemma to get

9 = 7 x 1 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 872 and 617 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(9,7) = HCF(16,9) = HCF(25,16) = HCF(41,25) = HCF(107,41) = HCF(255,107) = HCF(617,255) = HCF(872,617) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 515 > 1, we apply the division lemma to 515 and 1, to get

515 = 1 x 515 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 515 is 1

Notice that 1 = HCF(515,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 872, 617, 515 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 872, 617, 515?

Answer: HCF of 872, 617, 515 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 872, 617, 515 using Euclid's Algorithm?

Answer: For arbitrary numbers 872, 617, 515 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.