Highest Common Factor of 873, 643, 791, 72 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 873, 643, 791, 72 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 873, 643, 791, 72 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 873, 643, 791, 72 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 873, 643, 791, 72 is 1.

HCF(873, 643, 791, 72) = 1

HCF of 873, 643, 791, 72 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 873, 643, 791, 72 is 1.

Highest Common Factor of 873,643,791,72 using Euclid's algorithm

Highest Common Factor of 873,643,791,72 is 1

Step 1: Since 873 > 643, we apply the division lemma to 873 and 643, to get

873 = 643 x 1 + 230

Step 2: Since the reminder 643 ≠ 0, we apply division lemma to 230 and 643, to get

643 = 230 x 2 + 183

Step 3: We consider the new divisor 230 and the new remainder 183, and apply the division lemma to get

230 = 183 x 1 + 47

We consider the new divisor 183 and the new remainder 47,and apply the division lemma to get

183 = 47 x 3 + 42

We consider the new divisor 47 and the new remainder 42,and apply the division lemma to get

47 = 42 x 1 + 5

We consider the new divisor 42 and the new remainder 5,and apply the division lemma to get

42 = 5 x 8 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 873 and 643 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(42,5) = HCF(47,42) = HCF(183,47) = HCF(230,183) = HCF(643,230) = HCF(873,643) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 791 > 1, we apply the division lemma to 791 and 1, to get

791 = 1 x 791 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 791 is 1

Notice that 1 = HCF(791,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 72 > 1, we apply the division lemma to 72 and 1, to get

72 = 1 x 72 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 72 is 1

Notice that 1 = HCF(72,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 873, 643, 791, 72 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 873, 643, 791, 72?

Answer: HCF of 873, 643, 791, 72 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 873, 643, 791, 72 using Euclid's Algorithm?

Answer: For arbitrary numbers 873, 643, 791, 72 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.