Highest Common Factor of 873, 977, 437 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 873, 977, 437 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 873, 977, 437 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 873, 977, 437 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 873, 977, 437 is 1.

HCF(873, 977, 437) = 1

HCF of 873, 977, 437 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 873, 977, 437 is 1.

Highest Common Factor of 873,977,437 using Euclid's algorithm

Highest Common Factor of 873,977,437 is 1

Step 1: Since 977 > 873, we apply the division lemma to 977 and 873, to get

977 = 873 x 1 + 104

Step 2: Since the reminder 873 ≠ 0, we apply division lemma to 104 and 873, to get

873 = 104 x 8 + 41

Step 3: We consider the new divisor 104 and the new remainder 41, and apply the division lemma to get

104 = 41 x 2 + 22

We consider the new divisor 41 and the new remainder 22,and apply the division lemma to get

41 = 22 x 1 + 19

We consider the new divisor 22 and the new remainder 19,and apply the division lemma to get

22 = 19 x 1 + 3

We consider the new divisor 19 and the new remainder 3,and apply the division lemma to get

19 = 3 x 6 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 873 and 977 is 1

Notice that 1 = HCF(3,1) = HCF(19,3) = HCF(22,19) = HCF(41,22) = HCF(104,41) = HCF(873,104) = HCF(977,873) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 437 > 1, we apply the division lemma to 437 and 1, to get

437 = 1 x 437 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 437 is 1

Notice that 1 = HCF(437,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 873, 977, 437 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 873, 977, 437?

Answer: HCF of 873, 977, 437 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 873, 977, 437 using Euclid's Algorithm?

Answer: For arbitrary numbers 873, 977, 437 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.