Highest Common Factor of 875, 540, 640 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 875, 540, 640 i.e. 5 the largest integer that leaves a remainder zero for all numbers.

HCF of 875, 540, 640 is 5 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 875, 540, 640 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 875, 540, 640 is 5.

HCF(875, 540, 640) = 5

HCF of 875, 540, 640 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 875, 540, 640 is 5.

Highest Common Factor of 875,540,640 using Euclid's algorithm

Highest Common Factor of 875,540,640 is 5

Step 1: Since 875 > 540, we apply the division lemma to 875 and 540, to get

875 = 540 x 1 + 335

Step 2: Since the reminder 540 ≠ 0, we apply division lemma to 335 and 540, to get

540 = 335 x 1 + 205

Step 3: We consider the new divisor 335 and the new remainder 205, and apply the division lemma to get

335 = 205 x 1 + 130

We consider the new divisor 205 and the new remainder 130,and apply the division lemma to get

205 = 130 x 1 + 75

We consider the new divisor 130 and the new remainder 75,and apply the division lemma to get

130 = 75 x 1 + 55

We consider the new divisor 75 and the new remainder 55,and apply the division lemma to get

75 = 55 x 1 + 20

We consider the new divisor 55 and the new remainder 20,and apply the division lemma to get

55 = 20 x 2 + 15

We consider the new divisor 20 and the new remainder 15,and apply the division lemma to get

20 = 15 x 1 + 5

We consider the new divisor 15 and the new remainder 5,and apply the division lemma to get

15 = 5 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 875 and 540 is 5

Notice that 5 = HCF(15,5) = HCF(20,15) = HCF(55,20) = HCF(75,55) = HCF(130,75) = HCF(205,130) = HCF(335,205) = HCF(540,335) = HCF(875,540) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 640 > 5, we apply the division lemma to 640 and 5, to get

640 = 5 x 128 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 5 and 640 is 5

Notice that 5 = HCF(640,5) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 875, 540, 640 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 875, 540, 640?

Answer: HCF of 875, 540, 640 is 5 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 875, 540, 640 using Euclid's Algorithm?

Answer: For arbitrary numbers 875, 540, 640 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.