Highest Common Factor of 8769, 7371 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 8769, 7371 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 8769, 7371 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 8769, 7371 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 8769, 7371 is 3.

HCF(8769, 7371) = 3

HCF of 8769, 7371 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 8769, 7371 is 3.

Highest Common Factor of 8769,7371 using Euclid's algorithm

Highest Common Factor of 8769,7371 is 3

Step 1: Since 8769 > 7371, we apply the division lemma to 8769 and 7371, to get

8769 = 7371 x 1 + 1398

Step 2: Since the reminder 7371 ≠ 0, we apply division lemma to 1398 and 7371, to get

7371 = 1398 x 5 + 381

Step 3: We consider the new divisor 1398 and the new remainder 381, and apply the division lemma to get

1398 = 381 x 3 + 255

We consider the new divisor 381 and the new remainder 255,and apply the division lemma to get

381 = 255 x 1 + 126

We consider the new divisor 255 and the new remainder 126,and apply the division lemma to get

255 = 126 x 2 + 3

We consider the new divisor 126 and the new remainder 3,and apply the division lemma to get

126 = 3 x 42 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 8769 and 7371 is 3

Notice that 3 = HCF(126,3) = HCF(255,126) = HCF(381,255) = HCF(1398,381) = HCF(7371,1398) = HCF(8769,7371) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 8769, 7371 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 8769, 7371?

Answer: HCF of 8769, 7371 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 8769, 7371 using Euclid's Algorithm?

Answer: For arbitrary numbers 8769, 7371 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.