Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 877, 532, 698 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 877, 532, 698 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 877, 532, 698 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 877, 532, 698 is 1.
HCF(877, 532, 698) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 877, 532, 698 is 1.
Step 1: Since 877 > 532, we apply the division lemma to 877 and 532, to get
877 = 532 x 1 + 345
Step 2: Since the reminder 532 ≠ 0, we apply division lemma to 345 and 532, to get
532 = 345 x 1 + 187
Step 3: We consider the new divisor 345 and the new remainder 187, and apply the division lemma to get
345 = 187 x 1 + 158
We consider the new divisor 187 and the new remainder 158,and apply the division lemma to get
187 = 158 x 1 + 29
We consider the new divisor 158 and the new remainder 29,and apply the division lemma to get
158 = 29 x 5 + 13
We consider the new divisor 29 and the new remainder 13,and apply the division lemma to get
29 = 13 x 2 + 3
We consider the new divisor 13 and the new remainder 3,and apply the division lemma to get
13 = 3 x 4 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 877 and 532 is 1
Notice that 1 = HCF(3,1) = HCF(13,3) = HCF(29,13) = HCF(158,29) = HCF(187,158) = HCF(345,187) = HCF(532,345) = HCF(877,532) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 698 > 1, we apply the division lemma to 698 and 1, to get
698 = 1 x 698 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 698 is 1
Notice that 1 = HCF(698,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 877, 532, 698?
Answer: HCF of 877, 532, 698 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 877, 532, 698 using Euclid's Algorithm?
Answer: For arbitrary numbers 877, 532, 698 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.