Highest Common Factor of 8777, 4517, 76621 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 8777, 4517, 76621 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 8777, 4517, 76621 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 8777, 4517, 76621 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 8777, 4517, 76621 is 1.

HCF(8777, 4517, 76621) = 1

HCF of 8777, 4517, 76621 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 8777, 4517, 76621 is 1.

Highest Common Factor of 8777,4517,76621 using Euclid's algorithm

Highest Common Factor of 8777,4517,76621 is 1

Step 1: Since 8777 > 4517, we apply the division lemma to 8777 and 4517, to get

8777 = 4517 x 1 + 4260

Step 2: Since the reminder 4517 ≠ 0, we apply division lemma to 4260 and 4517, to get

4517 = 4260 x 1 + 257

Step 3: We consider the new divisor 4260 and the new remainder 257, and apply the division lemma to get

4260 = 257 x 16 + 148

We consider the new divisor 257 and the new remainder 148,and apply the division lemma to get

257 = 148 x 1 + 109

We consider the new divisor 148 and the new remainder 109,and apply the division lemma to get

148 = 109 x 1 + 39

We consider the new divisor 109 and the new remainder 39,and apply the division lemma to get

109 = 39 x 2 + 31

We consider the new divisor 39 and the new remainder 31,and apply the division lemma to get

39 = 31 x 1 + 8

We consider the new divisor 31 and the new remainder 8,and apply the division lemma to get

31 = 8 x 3 + 7

We consider the new divisor 8 and the new remainder 7,and apply the division lemma to get

8 = 7 x 1 + 1

We consider the new divisor 7 and the new remainder 1,and apply the division lemma to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 8777 and 4517 is 1

Notice that 1 = HCF(7,1) = HCF(8,7) = HCF(31,8) = HCF(39,31) = HCF(109,39) = HCF(148,109) = HCF(257,148) = HCF(4260,257) = HCF(4517,4260) = HCF(8777,4517) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 76621 > 1, we apply the division lemma to 76621 and 1, to get

76621 = 1 x 76621 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 76621 is 1

Notice that 1 = HCF(76621,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 8777, 4517, 76621 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 8777, 4517, 76621?

Answer: HCF of 8777, 4517, 76621 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 8777, 4517, 76621 using Euclid's Algorithm?

Answer: For arbitrary numbers 8777, 4517, 76621 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.