Highest Common Factor of 88, 55, 98, 620 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 88, 55, 98, 620 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 88, 55, 98, 620 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 88, 55, 98, 620 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 88, 55, 98, 620 is 1.

HCF(88, 55, 98, 620) = 1

HCF of 88, 55, 98, 620 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 88, 55, 98, 620 is 1.

Highest Common Factor of 88,55,98,620 using Euclid's algorithm

Highest Common Factor of 88,55,98,620 is 1

Step 1: Since 88 > 55, we apply the division lemma to 88 and 55, to get

88 = 55 x 1 + 33

Step 2: Since the reminder 55 ≠ 0, we apply division lemma to 33 and 55, to get

55 = 33 x 1 + 22

Step 3: We consider the new divisor 33 and the new remainder 22, and apply the division lemma to get

33 = 22 x 1 + 11

We consider the new divisor 22 and the new remainder 11, and apply the division lemma to get

22 = 11 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 11, the HCF of 88 and 55 is 11

Notice that 11 = HCF(22,11) = HCF(33,22) = HCF(55,33) = HCF(88,55) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 98 > 11, we apply the division lemma to 98 and 11, to get

98 = 11 x 8 + 10

Step 2: Since the reminder 11 ≠ 0, we apply division lemma to 10 and 11, to get

11 = 10 x 1 + 1

Step 3: We consider the new divisor 10 and the new remainder 1, and apply the division lemma to get

10 = 1 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 11 and 98 is 1

Notice that 1 = HCF(10,1) = HCF(11,10) = HCF(98,11) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 620 > 1, we apply the division lemma to 620 and 1, to get

620 = 1 x 620 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 620 is 1

Notice that 1 = HCF(620,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 88, 55, 98, 620 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 88, 55, 98, 620?

Answer: HCF of 88, 55, 98, 620 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 88, 55, 98, 620 using Euclid's Algorithm?

Answer: For arbitrary numbers 88, 55, 98, 620 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.