Highest Common Factor of 881, 620, 429 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 881, 620, 429 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 881, 620, 429 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 881, 620, 429 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 881, 620, 429 is 1.

HCF(881, 620, 429) = 1

HCF of 881, 620, 429 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 881, 620, 429 is 1.

Highest Common Factor of 881,620,429 using Euclid's algorithm

Highest Common Factor of 881,620,429 is 1

Step 1: Since 881 > 620, we apply the division lemma to 881 and 620, to get

881 = 620 x 1 + 261

Step 2: Since the reminder 620 ≠ 0, we apply division lemma to 261 and 620, to get

620 = 261 x 2 + 98

Step 3: We consider the new divisor 261 and the new remainder 98, and apply the division lemma to get

261 = 98 x 2 + 65

We consider the new divisor 98 and the new remainder 65,and apply the division lemma to get

98 = 65 x 1 + 33

We consider the new divisor 65 and the new remainder 33,and apply the division lemma to get

65 = 33 x 1 + 32

We consider the new divisor 33 and the new remainder 32,and apply the division lemma to get

33 = 32 x 1 + 1

We consider the new divisor 32 and the new remainder 1,and apply the division lemma to get

32 = 1 x 32 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 881 and 620 is 1

Notice that 1 = HCF(32,1) = HCF(33,32) = HCF(65,33) = HCF(98,65) = HCF(261,98) = HCF(620,261) = HCF(881,620) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 429 > 1, we apply the division lemma to 429 and 1, to get

429 = 1 x 429 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 429 is 1

Notice that 1 = HCF(429,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 881, 620, 429 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 881, 620, 429?

Answer: HCF of 881, 620, 429 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 881, 620, 429 using Euclid's Algorithm?

Answer: For arbitrary numbers 881, 620, 429 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.