Highest Common Factor of 882, 702, 100 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 882, 702, 100 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 882, 702, 100 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 882, 702, 100 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 882, 702, 100 is 2.

HCF(882, 702, 100) = 2

HCF of 882, 702, 100 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 882, 702, 100 is 2.

Highest Common Factor of 882,702,100 using Euclid's algorithm

Highest Common Factor of 882,702,100 is 2

Step 1: Since 882 > 702, we apply the division lemma to 882 and 702, to get

882 = 702 x 1 + 180

Step 2: Since the reminder 702 ≠ 0, we apply division lemma to 180 and 702, to get

702 = 180 x 3 + 162

Step 3: We consider the new divisor 180 and the new remainder 162, and apply the division lemma to get

180 = 162 x 1 + 18

We consider the new divisor 162 and the new remainder 18, and apply the division lemma to get

162 = 18 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 18, the HCF of 882 and 702 is 18

Notice that 18 = HCF(162,18) = HCF(180,162) = HCF(702,180) = HCF(882,702) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 100 > 18, we apply the division lemma to 100 and 18, to get

100 = 18 x 5 + 10

Step 2: Since the reminder 18 ≠ 0, we apply division lemma to 10 and 18, to get

18 = 10 x 1 + 8

Step 3: We consider the new divisor 10 and the new remainder 8, and apply the division lemma to get

10 = 8 x 1 + 2

We consider the new divisor 8 and the new remainder 2, and apply the division lemma to get

8 = 2 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 18 and 100 is 2

Notice that 2 = HCF(8,2) = HCF(10,8) = HCF(18,10) = HCF(100,18) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 882, 702, 100 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 882, 702, 100?

Answer: HCF of 882, 702, 100 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 882, 702, 100 using Euclid's Algorithm?

Answer: For arbitrary numbers 882, 702, 100 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.