Highest Common Factor of 8871, 9305 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 8871, 9305 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 8871, 9305 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 8871, 9305 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 8871, 9305 is 1.

HCF(8871, 9305) = 1

HCF of 8871, 9305 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 8871, 9305 is 1.

Highest Common Factor of 8871,9305 using Euclid's algorithm

Highest Common Factor of 8871,9305 is 1

Step 1: Since 9305 > 8871, we apply the division lemma to 9305 and 8871, to get

9305 = 8871 x 1 + 434

Step 2: Since the reminder 8871 ≠ 0, we apply division lemma to 434 and 8871, to get

8871 = 434 x 20 + 191

Step 3: We consider the new divisor 434 and the new remainder 191, and apply the division lemma to get

434 = 191 x 2 + 52

We consider the new divisor 191 and the new remainder 52,and apply the division lemma to get

191 = 52 x 3 + 35

We consider the new divisor 52 and the new remainder 35,and apply the division lemma to get

52 = 35 x 1 + 17

We consider the new divisor 35 and the new remainder 17,and apply the division lemma to get

35 = 17 x 2 + 1

We consider the new divisor 17 and the new remainder 1,and apply the division lemma to get

17 = 1 x 17 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 8871 and 9305 is 1

Notice that 1 = HCF(17,1) = HCF(35,17) = HCF(52,35) = HCF(191,52) = HCF(434,191) = HCF(8871,434) = HCF(9305,8871) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 8871, 9305 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 8871, 9305?

Answer: HCF of 8871, 9305 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 8871, 9305 using Euclid's Algorithm?

Answer: For arbitrary numbers 8871, 9305 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.