Highest Common Factor of 888, 192, 714 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 888, 192, 714 i.e. 6 the largest integer that leaves a remainder zero for all numbers.

HCF of 888, 192, 714 is 6 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 888, 192, 714 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 888, 192, 714 is 6.

HCF(888, 192, 714) = 6

HCF of 888, 192, 714 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 888, 192, 714 is 6.

Highest Common Factor of 888,192,714 using Euclid's algorithm

Highest Common Factor of 888,192,714 is 6

Step 1: Since 888 > 192, we apply the division lemma to 888 and 192, to get

888 = 192 x 4 + 120

Step 2: Since the reminder 192 ≠ 0, we apply division lemma to 120 and 192, to get

192 = 120 x 1 + 72

Step 3: We consider the new divisor 120 and the new remainder 72, and apply the division lemma to get

120 = 72 x 1 + 48

We consider the new divisor 72 and the new remainder 48,and apply the division lemma to get

72 = 48 x 1 + 24

We consider the new divisor 48 and the new remainder 24,and apply the division lemma to get

48 = 24 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 24, the HCF of 888 and 192 is 24

Notice that 24 = HCF(48,24) = HCF(72,48) = HCF(120,72) = HCF(192,120) = HCF(888,192) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 714 > 24, we apply the division lemma to 714 and 24, to get

714 = 24 x 29 + 18

Step 2: Since the reminder 24 ≠ 0, we apply division lemma to 18 and 24, to get

24 = 18 x 1 + 6

Step 3: We consider the new divisor 18 and the new remainder 6, and apply the division lemma to get

18 = 6 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 6, the HCF of 24 and 714 is 6

Notice that 6 = HCF(18,6) = HCF(24,18) = HCF(714,24) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 888, 192, 714 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 888, 192, 714?

Answer: HCF of 888, 192, 714 is 6 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 888, 192, 714 using Euclid's Algorithm?

Answer: For arbitrary numbers 888, 192, 714 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.