Highest Common Factor of 889, 769, 769 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 889, 769, 769 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 889, 769, 769 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 889, 769, 769 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 889, 769, 769 is 1.

HCF(889, 769, 769) = 1

HCF of 889, 769, 769 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 889, 769, 769 is 1.

Highest Common Factor of 889,769,769 using Euclid's algorithm

Highest Common Factor of 889,769,769 is 1

Step 1: Since 889 > 769, we apply the division lemma to 889 and 769, to get

889 = 769 x 1 + 120

Step 2: Since the reminder 769 ≠ 0, we apply division lemma to 120 and 769, to get

769 = 120 x 6 + 49

Step 3: We consider the new divisor 120 and the new remainder 49, and apply the division lemma to get

120 = 49 x 2 + 22

We consider the new divisor 49 and the new remainder 22,and apply the division lemma to get

49 = 22 x 2 + 5

We consider the new divisor 22 and the new remainder 5,and apply the division lemma to get

22 = 5 x 4 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 889 and 769 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(22,5) = HCF(49,22) = HCF(120,49) = HCF(769,120) = HCF(889,769) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 769 > 1, we apply the division lemma to 769 and 1, to get

769 = 1 x 769 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 769 is 1

Notice that 1 = HCF(769,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 889, 769, 769 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 889, 769, 769?

Answer: HCF of 889, 769, 769 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 889, 769, 769 using Euclid's Algorithm?

Answer: For arbitrary numbers 889, 769, 769 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.