Highest Common Factor of 890, 374, 376 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 890, 374, 376 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 890, 374, 376 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 890, 374, 376 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 890, 374, 376 is 2.

HCF(890, 374, 376) = 2

HCF of 890, 374, 376 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 890, 374, 376 is 2.

Highest Common Factor of 890,374,376 using Euclid's algorithm

Highest Common Factor of 890,374,376 is 2

Step 1: Since 890 > 374, we apply the division lemma to 890 and 374, to get

890 = 374 x 2 + 142

Step 2: Since the reminder 374 ≠ 0, we apply division lemma to 142 and 374, to get

374 = 142 x 2 + 90

Step 3: We consider the new divisor 142 and the new remainder 90, and apply the division lemma to get

142 = 90 x 1 + 52

We consider the new divisor 90 and the new remainder 52,and apply the division lemma to get

90 = 52 x 1 + 38

We consider the new divisor 52 and the new remainder 38,and apply the division lemma to get

52 = 38 x 1 + 14

We consider the new divisor 38 and the new remainder 14,and apply the division lemma to get

38 = 14 x 2 + 10

We consider the new divisor 14 and the new remainder 10,and apply the division lemma to get

14 = 10 x 1 + 4

We consider the new divisor 10 and the new remainder 4,and apply the division lemma to get

10 = 4 x 2 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 890 and 374 is 2

Notice that 2 = HCF(4,2) = HCF(10,4) = HCF(14,10) = HCF(38,14) = HCF(52,38) = HCF(90,52) = HCF(142,90) = HCF(374,142) = HCF(890,374) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 376 > 2, we apply the division lemma to 376 and 2, to get

376 = 2 x 188 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 376 is 2

Notice that 2 = HCF(376,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 890, 374, 376 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 890, 374, 376?

Answer: HCF of 890, 374, 376 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 890, 374, 376 using Euclid's Algorithm?

Answer: For arbitrary numbers 890, 374, 376 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.