Highest Common Factor of 890, 993, 782 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 890, 993, 782 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 890, 993, 782 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 890, 993, 782 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 890, 993, 782 is 1.

HCF(890, 993, 782) = 1

HCF of 890, 993, 782 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 890, 993, 782 is 1.

Highest Common Factor of 890,993,782 using Euclid's algorithm

Highest Common Factor of 890,993,782 is 1

Step 1: Since 993 > 890, we apply the division lemma to 993 and 890, to get

993 = 890 x 1 + 103

Step 2: Since the reminder 890 ≠ 0, we apply division lemma to 103 and 890, to get

890 = 103 x 8 + 66

Step 3: We consider the new divisor 103 and the new remainder 66, and apply the division lemma to get

103 = 66 x 1 + 37

We consider the new divisor 66 and the new remainder 37,and apply the division lemma to get

66 = 37 x 1 + 29

We consider the new divisor 37 and the new remainder 29,and apply the division lemma to get

37 = 29 x 1 + 8

We consider the new divisor 29 and the new remainder 8,and apply the division lemma to get

29 = 8 x 3 + 5

We consider the new divisor 8 and the new remainder 5,and apply the division lemma to get

8 = 5 x 1 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 890 and 993 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(8,5) = HCF(29,8) = HCF(37,29) = HCF(66,37) = HCF(103,66) = HCF(890,103) = HCF(993,890) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 782 > 1, we apply the division lemma to 782 and 1, to get

782 = 1 x 782 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 782 is 1

Notice that 1 = HCF(782,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 890, 993, 782 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 890, 993, 782?

Answer: HCF of 890, 993, 782 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 890, 993, 782 using Euclid's Algorithm?

Answer: For arbitrary numbers 890, 993, 782 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.