Highest Common Factor of 8914, 4347 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 8914, 4347 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 8914, 4347 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 8914, 4347 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 8914, 4347 is 1.

HCF(8914, 4347) = 1

HCF of 8914, 4347 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 8914, 4347 is 1.

Highest Common Factor of 8914,4347 using Euclid's algorithm

Highest Common Factor of 8914,4347 is 1

Step 1: Since 8914 > 4347, we apply the division lemma to 8914 and 4347, to get

8914 = 4347 x 2 + 220

Step 2: Since the reminder 4347 ≠ 0, we apply division lemma to 220 and 4347, to get

4347 = 220 x 19 + 167

Step 3: We consider the new divisor 220 and the new remainder 167, and apply the division lemma to get

220 = 167 x 1 + 53

We consider the new divisor 167 and the new remainder 53,and apply the division lemma to get

167 = 53 x 3 + 8

We consider the new divisor 53 and the new remainder 8,and apply the division lemma to get

53 = 8 x 6 + 5

We consider the new divisor 8 and the new remainder 5,and apply the division lemma to get

8 = 5 x 1 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 8914 and 4347 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(8,5) = HCF(53,8) = HCF(167,53) = HCF(220,167) = HCF(4347,220) = HCF(8914,4347) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 8914, 4347 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 8914, 4347?

Answer: HCF of 8914, 4347 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 8914, 4347 using Euclid's Algorithm?

Answer: For arbitrary numbers 8914, 4347 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.