Highest Common Factor of 892, 559 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 892, 559 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 892, 559 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 892, 559 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 892, 559 is 1.

HCF(892, 559) = 1

HCF of 892, 559 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 892, 559 is 1.

Highest Common Factor of 892,559 using Euclid's algorithm

Highest Common Factor of 892,559 is 1

Step 1: Since 892 > 559, we apply the division lemma to 892 and 559, to get

892 = 559 x 1 + 333

Step 2: Since the reminder 559 ≠ 0, we apply division lemma to 333 and 559, to get

559 = 333 x 1 + 226

Step 3: We consider the new divisor 333 and the new remainder 226, and apply the division lemma to get

333 = 226 x 1 + 107

We consider the new divisor 226 and the new remainder 107,and apply the division lemma to get

226 = 107 x 2 + 12

We consider the new divisor 107 and the new remainder 12,and apply the division lemma to get

107 = 12 x 8 + 11

We consider the new divisor 12 and the new remainder 11,and apply the division lemma to get

12 = 11 x 1 + 1

We consider the new divisor 11 and the new remainder 1,and apply the division lemma to get

11 = 1 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 892 and 559 is 1

Notice that 1 = HCF(11,1) = HCF(12,11) = HCF(107,12) = HCF(226,107) = HCF(333,226) = HCF(559,333) = HCF(892,559) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 892, 559 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 892, 559?

Answer: HCF of 892, 559 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 892, 559 using Euclid's Algorithm?

Answer: For arbitrary numbers 892, 559 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.