Highest Common Factor of 894, 645 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 894, 645 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 894, 645 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 894, 645 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 894, 645 is 3.

HCF(894, 645) = 3

HCF of 894, 645 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 894, 645 is 3.

Highest Common Factor of 894,645 using Euclid's algorithm

Highest Common Factor of 894,645 is 3

Step 1: Since 894 > 645, we apply the division lemma to 894 and 645, to get

894 = 645 x 1 + 249

Step 2: Since the reminder 645 ≠ 0, we apply division lemma to 249 and 645, to get

645 = 249 x 2 + 147

Step 3: We consider the new divisor 249 and the new remainder 147, and apply the division lemma to get

249 = 147 x 1 + 102

We consider the new divisor 147 and the new remainder 102,and apply the division lemma to get

147 = 102 x 1 + 45

We consider the new divisor 102 and the new remainder 45,and apply the division lemma to get

102 = 45 x 2 + 12

We consider the new divisor 45 and the new remainder 12,and apply the division lemma to get

45 = 12 x 3 + 9

We consider the new divisor 12 and the new remainder 9,and apply the division lemma to get

12 = 9 x 1 + 3

We consider the new divisor 9 and the new remainder 3,and apply the division lemma to get

9 = 3 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 894 and 645 is 3

Notice that 3 = HCF(9,3) = HCF(12,9) = HCF(45,12) = HCF(102,45) = HCF(147,102) = HCF(249,147) = HCF(645,249) = HCF(894,645) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 894, 645 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 894, 645?

Answer: HCF of 894, 645 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 894, 645 using Euclid's Algorithm?

Answer: For arbitrary numbers 894, 645 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.