Highest Common Factor of 895, 543 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 895, 543 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 895, 543 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 895, 543 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 895, 543 is 1.

HCF(895, 543) = 1

HCF of 895, 543 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 895, 543 is 1.

Highest Common Factor of 895,543 using Euclid's algorithm

Highest Common Factor of 895,543 is 1

Step 1: Since 895 > 543, we apply the division lemma to 895 and 543, to get

895 = 543 x 1 + 352

Step 2: Since the reminder 543 ≠ 0, we apply division lemma to 352 and 543, to get

543 = 352 x 1 + 191

Step 3: We consider the new divisor 352 and the new remainder 191, and apply the division lemma to get

352 = 191 x 1 + 161

We consider the new divisor 191 and the new remainder 161,and apply the division lemma to get

191 = 161 x 1 + 30

We consider the new divisor 161 and the new remainder 30,and apply the division lemma to get

161 = 30 x 5 + 11

We consider the new divisor 30 and the new remainder 11,and apply the division lemma to get

30 = 11 x 2 + 8

We consider the new divisor 11 and the new remainder 8,and apply the division lemma to get

11 = 8 x 1 + 3

We consider the new divisor 8 and the new remainder 3,and apply the division lemma to get

8 = 3 x 2 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 895 and 543 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(8,3) = HCF(11,8) = HCF(30,11) = HCF(161,30) = HCF(191,161) = HCF(352,191) = HCF(543,352) = HCF(895,543) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 895, 543 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 895, 543?

Answer: HCF of 895, 543 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 895, 543 using Euclid's Algorithm?

Answer: For arbitrary numbers 895, 543 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.