Highest Common Factor of 895, 985, 713 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 895, 985, 713 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 895, 985, 713 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 895, 985, 713 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 895, 985, 713 is 1.

HCF(895, 985, 713) = 1

HCF of 895, 985, 713 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 895, 985, 713 is 1.

Highest Common Factor of 895,985,713 using Euclid's algorithm

Highest Common Factor of 895,985,713 is 1

Step 1: Since 985 > 895, we apply the division lemma to 985 and 895, to get

985 = 895 x 1 + 90

Step 2: Since the reminder 895 ≠ 0, we apply division lemma to 90 and 895, to get

895 = 90 x 9 + 85

Step 3: We consider the new divisor 90 and the new remainder 85, and apply the division lemma to get

90 = 85 x 1 + 5

We consider the new divisor 85 and the new remainder 5, and apply the division lemma to get

85 = 5 x 17 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 895 and 985 is 5

Notice that 5 = HCF(85,5) = HCF(90,85) = HCF(895,90) = HCF(985,895) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 713 > 5, we apply the division lemma to 713 and 5, to get

713 = 5 x 142 + 3

Step 2: Since the reminder 5 ≠ 0, we apply division lemma to 3 and 5, to get

5 = 3 x 1 + 2

Step 3: We consider the new divisor 3 and the new remainder 2, and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5 and 713 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(713,5) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 895, 985, 713 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 895, 985, 713?

Answer: HCF of 895, 985, 713 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 895, 985, 713 using Euclid's Algorithm?

Answer: For arbitrary numbers 895, 985, 713 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.