Highest Common Factor of 896, 205, 596, 485 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 896, 205, 596, 485 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 896, 205, 596, 485 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 896, 205, 596, 485 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 896, 205, 596, 485 is 1.

HCF(896, 205, 596, 485) = 1

HCF of 896, 205, 596, 485 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 896, 205, 596, 485 is 1.

Highest Common Factor of 896,205,596,485 using Euclid's algorithm

Highest Common Factor of 896,205,596,485 is 1

Step 1: Since 896 > 205, we apply the division lemma to 896 and 205, to get

896 = 205 x 4 + 76

Step 2: Since the reminder 205 ≠ 0, we apply division lemma to 76 and 205, to get

205 = 76 x 2 + 53

Step 3: We consider the new divisor 76 and the new remainder 53, and apply the division lemma to get

76 = 53 x 1 + 23

We consider the new divisor 53 and the new remainder 23,and apply the division lemma to get

53 = 23 x 2 + 7

We consider the new divisor 23 and the new remainder 7,and apply the division lemma to get

23 = 7 x 3 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 896 and 205 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(23,7) = HCF(53,23) = HCF(76,53) = HCF(205,76) = HCF(896,205) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 596 > 1, we apply the division lemma to 596 and 1, to get

596 = 1 x 596 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 596 is 1

Notice that 1 = HCF(596,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 485 > 1, we apply the division lemma to 485 and 1, to get

485 = 1 x 485 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 485 is 1

Notice that 1 = HCF(485,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 896, 205, 596, 485 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 896, 205, 596, 485?

Answer: HCF of 896, 205, 596, 485 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 896, 205, 596, 485 using Euclid's Algorithm?

Answer: For arbitrary numbers 896, 205, 596, 485 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.