Highest Common Factor of 896, 24955 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 896, 24955 i.e. 7 the largest integer that leaves a remainder zero for all numbers.

HCF of 896, 24955 is 7 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 896, 24955 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 896, 24955 is 7.

HCF(896, 24955) = 7

HCF of 896, 24955 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 896, 24955 is 7.

Highest Common Factor of 896,24955 using Euclid's algorithm

Highest Common Factor of 896,24955 is 7

Step 1: Since 24955 > 896, we apply the division lemma to 24955 and 896, to get

24955 = 896 x 27 + 763

Step 2: Since the reminder 896 ≠ 0, we apply division lemma to 763 and 896, to get

896 = 763 x 1 + 133

Step 3: We consider the new divisor 763 and the new remainder 133, and apply the division lemma to get

763 = 133 x 5 + 98

We consider the new divisor 133 and the new remainder 98,and apply the division lemma to get

133 = 98 x 1 + 35

We consider the new divisor 98 and the new remainder 35,and apply the division lemma to get

98 = 35 x 2 + 28

We consider the new divisor 35 and the new remainder 28,and apply the division lemma to get

35 = 28 x 1 + 7

We consider the new divisor 28 and the new remainder 7,and apply the division lemma to get

28 = 7 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 7, the HCF of 896 and 24955 is 7

Notice that 7 = HCF(28,7) = HCF(35,28) = HCF(98,35) = HCF(133,98) = HCF(763,133) = HCF(896,763) = HCF(24955,896) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 896, 24955 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 896, 24955?

Answer: HCF of 896, 24955 is 7 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 896, 24955 using Euclid's Algorithm?

Answer: For arbitrary numbers 896, 24955 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.