Highest Common Factor of 898, 726, 644, 70 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 898, 726, 644, 70 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 898, 726, 644, 70 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 898, 726, 644, 70 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 898, 726, 644, 70 is 2.

HCF(898, 726, 644, 70) = 2

HCF of 898, 726, 644, 70 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 898, 726, 644, 70 is 2.

Highest Common Factor of 898,726,644,70 using Euclid's algorithm

Highest Common Factor of 898,726,644,70 is 2

Step 1: Since 898 > 726, we apply the division lemma to 898 and 726, to get

898 = 726 x 1 + 172

Step 2: Since the reminder 726 ≠ 0, we apply division lemma to 172 and 726, to get

726 = 172 x 4 + 38

Step 3: We consider the new divisor 172 and the new remainder 38, and apply the division lemma to get

172 = 38 x 4 + 20

We consider the new divisor 38 and the new remainder 20,and apply the division lemma to get

38 = 20 x 1 + 18

We consider the new divisor 20 and the new remainder 18,and apply the division lemma to get

20 = 18 x 1 + 2

We consider the new divisor 18 and the new remainder 2,and apply the division lemma to get

18 = 2 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 898 and 726 is 2

Notice that 2 = HCF(18,2) = HCF(20,18) = HCF(38,20) = HCF(172,38) = HCF(726,172) = HCF(898,726) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 644 > 2, we apply the division lemma to 644 and 2, to get

644 = 2 x 322 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 644 is 2

Notice that 2 = HCF(644,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 70 > 2, we apply the division lemma to 70 and 2, to get

70 = 2 x 35 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 70 is 2

Notice that 2 = HCF(70,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 898, 726, 644, 70 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 898, 726, 644, 70?

Answer: HCF of 898, 726, 644, 70 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 898, 726, 644, 70 using Euclid's Algorithm?

Answer: For arbitrary numbers 898, 726, 644, 70 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.