Highest Common Factor of 898, 954, 355, 760 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 898, 954, 355, 760 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 898, 954, 355, 760 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 898, 954, 355, 760 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 898, 954, 355, 760 is 1.

HCF(898, 954, 355, 760) = 1

HCF of 898, 954, 355, 760 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 898, 954, 355, 760 is 1.

Highest Common Factor of 898,954,355,760 using Euclid's algorithm

Highest Common Factor of 898,954,355,760 is 1

Step 1: Since 954 > 898, we apply the division lemma to 954 and 898, to get

954 = 898 x 1 + 56

Step 2: Since the reminder 898 ≠ 0, we apply division lemma to 56 and 898, to get

898 = 56 x 16 + 2

Step 3: We consider the new divisor 56 and the new remainder 2, and apply the division lemma to get

56 = 2 x 28 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 898 and 954 is 2

Notice that 2 = HCF(56,2) = HCF(898,56) = HCF(954,898) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 355 > 2, we apply the division lemma to 355 and 2, to get

355 = 2 x 177 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 355 is 1

Notice that 1 = HCF(2,1) = HCF(355,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 760 > 1, we apply the division lemma to 760 and 1, to get

760 = 1 x 760 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 760 is 1

Notice that 1 = HCF(760,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 898, 954, 355, 760 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 898, 954, 355, 760?

Answer: HCF of 898, 954, 355, 760 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 898, 954, 355, 760 using Euclid's Algorithm?

Answer: For arbitrary numbers 898, 954, 355, 760 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.