Highest Common Factor of 900, 345, 68 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 900, 345, 68 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 900, 345, 68 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 900, 345, 68 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 900, 345, 68 is 1.

HCF(900, 345, 68) = 1

HCF of 900, 345, 68 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 900, 345, 68 is 1.

Highest Common Factor of 900,345,68 using Euclid's algorithm

Highest Common Factor of 900,345,68 is 1

Step 1: Since 900 > 345, we apply the division lemma to 900 and 345, to get

900 = 345 x 2 + 210

Step 2: Since the reminder 345 ≠ 0, we apply division lemma to 210 and 345, to get

345 = 210 x 1 + 135

Step 3: We consider the new divisor 210 and the new remainder 135, and apply the division lemma to get

210 = 135 x 1 + 75

We consider the new divisor 135 and the new remainder 75,and apply the division lemma to get

135 = 75 x 1 + 60

We consider the new divisor 75 and the new remainder 60,and apply the division lemma to get

75 = 60 x 1 + 15

We consider the new divisor 60 and the new remainder 15,and apply the division lemma to get

60 = 15 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 15, the HCF of 900 and 345 is 15

Notice that 15 = HCF(60,15) = HCF(75,60) = HCF(135,75) = HCF(210,135) = HCF(345,210) = HCF(900,345) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 68 > 15, we apply the division lemma to 68 and 15, to get

68 = 15 x 4 + 8

Step 2: Since the reminder 15 ≠ 0, we apply division lemma to 8 and 15, to get

15 = 8 x 1 + 7

Step 3: We consider the new divisor 8 and the new remainder 7, and apply the division lemma to get

8 = 7 x 1 + 1

We consider the new divisor 7 and the new remainder 1, and apply the division lemma to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 15 and 68 is 1

Notice that 1 = HCF(7,1) = HCF(8,7) = HCF(15,8) = HCF(68,15) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 900, 345, 68 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 900, 345, 68?

Answer: HCF of 900, 345, 68 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 900, 345, 68 using Euclid's Algorithm?

Answer: For arbitrary numbers 900, 345, 68 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.