Highest Common Factor of 900, 375 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 900, 375 i.e. 75 the largest integer that leaves a remainder zero for all numbers.

HCF of 900, 375 is 75 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 900, 375 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 900, 375 is 75.

HCF(900, 375) = 75

HCF of 900, 375 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 900, 375 is 75.

Highest Common Factor of 900,375 using Euclid's algorithm

Highest Common Factor of 900,375 is 75

Step 1: Since 900 > 375, we apply the division lemma to 900 and 375, to get

900 = 375 x 2 + 150

Step 2: Since the reminder 375 ≠ 0, we apply division lemma to 150 and 375, to get

375 = 150 x 2 + 75

Step 3: We consider the new divisor 150 and the new remainder 75, and apply the division lemma to get

150 = 75 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 75, the HCF of 900 and 375 is 75

Notice that 75 = HCF(150,75) = HCF(375,150) = HCF(900,375) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 900, 375 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 900, 375?

Answer: HCF of 900, 375 is 75 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 900, 375 using Euclid's Algorithm?

Answer: For arbitrary numbers 900, 375 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.