Highest Common Factor of 901, 726, 618, 934 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 901, 726, 618, 934 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 901, 726, 618, 934 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 901, 726, 618, 934 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 901, 726, 618, 934 is 1.

HCF(901, 726, 618, 934) = 1

HCF of 901, 726, 618, 934 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 901, 726, 618, 934 is 1.

Highest Common Factor of 901,726,618,934 using Euclid's algorithm

Highest Common Factor of 901,726,618,934 is 1

Step 1: Since 901 > 726, we apply the division lemma to 901 and 726, to get

901 = 726 x 1 + 175

Step 2: Since the reminder 726 ≠ 0, we apply division lemma to 175 and 726, to get

726 = 175 x 4 + 26

Step 3: We consider the new divisor 175 and the new remainder 26, and apply the division lemma to get

175 = 26 x 6 + 19

We consider the new divisor 26 and the new remainder 19,and apply the division lemma to get

26 = 19 x 1 + 7

We consider the new divisor 19 and the new remainder 7,and apply the division lemma to get

19 = 7 x 2 + 5

We consider the new divisor 7 and the new remainder 5,and apply the division lemma to get

7 = 5 x 1 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 901 and 726 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(7,5) = HCF(19,7) = HCF(26,19) = HCF(175,26) = HCF(726,175) = HCF(901,726) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 618 > 1, we apply the division lemma to 618 and 1, to get

618 = 1 x 618 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 618 is 1

Notice that 1 = HCF(618,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 934 > 1, we apply the division lemma to 934 and 1, to get

934 = 1 x 934 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 934 is 1

Notice that 1 = HCF(934,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 901, 726, 618, 934 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 901, 726, 618, 934?

Answer: HCF of 901, 726, 618, 934 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 901, 726, 618, 934 using Euclid's Algorithm?

Answer: For arbitrary numbers 901, 726, 618, 934 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.