Highest Common Factor of 9037, 9994 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9037, 9994 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 9037, 9994 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 9037, 9994 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 9037, 9994 is 1.

HCF(9037, 9994) = 1

HCF of 9037, 9994 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 9037, 9994 is 1.

Highest Common Factor of 9037,9994 using Euclid's algorithm

Highest Common Factor of 9037,9994 is 1

Step 1: Since 9994 > 9037, we apply the division lemma to 9994 and 9037, to get

9994 = 9037 x 1 + 957

Step 2: Since the reminder 9037 ≠ 0, we apply division lemma to 957 and 9037, to get

9037 = 957 x 9 + 424

Step 3: We consider the new divisor 957 and the new remainder 424, and apply the division lemma to get

957 = 424 x 2 + 109

We consider the new divisor 424 and the new remainder 109,and apply the division lemma to get

424 = 109 x 3 + 97

We consider the new divisor 109 and the new remainder 97,and apply the division lemma to get

109 = 97 x 1 + 12

We consider the new divisor 97 and the new remainder 12,and apply the division lemma to get

97 = 12 x 8 + 1

We consider the new divisor 12 and the new remainder 1,and apply the division lemma to get

12 = 1 x 12 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9037 and 9994 is 1

Notice that 1 = HCF(12,1) = HCF(97,12) = HCF(109,97) = HCF(424,109) = HCF(957,424) = HCF(9037,957) = HCF(9994,9037) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 9037, 9994 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 9037, 9994?

Answer: HCF of 9037, 9994 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 9037, 9994 using Euclid's Algorithm?

Answer: For arbitrary numbers 9037, 9994 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.