Highest Common Factor of 904, 534, 942 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 904, 534, 942 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 904, 534, 942 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 904, 534, 942 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 904, 534, 942 is 2.

HCF(904, 534, 942) = 2

HCF of 904, 534, 942 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 904, 534, 942 is 2.

Highest Common Factor of 904,534,942 using Euclid's algorithm

Highest Common Factor of 904,534,942 is 2

Step 1: Since 904 > 534, we apply the division lemma to 904 and 534, to get

904 = 534 x 1 + 370

Step 2: Since the reminder 534 ≠ 0, we apply division lemma to 370 and 534, to get

534 = 370 x 1 + 164

Step 3: We consider the new divisor 370 and the new remainder 164, and apply the division lemma to get

370 = 164 x 2 + 42

We consider the new divisor 164 and the new remainder 42,and apply the division lemma to get

164 = 42 x 3 + 38

We consider the new divisor 42 and the new remainder 38,and apply the division lemma to get

42 = 38 x 1 + 4

We consider the new divisor 38 and the new remainder 4,and apply the division lemma to get

38 = 4 x 9 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 904 and 534 is 2

Notice that 2 = HCF(4,2) = HCF(38,4) = HCF(42,38) = HCF(164,42) = HCF(370,164) = HCF(534,370) = HCF(904,534) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 942 > 2, we apply the division lemma to 942 and 2, to get

942 = 2 x 471 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 942 is 2

Notice that 2 = HCF(942,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 904, 534, 942 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 904, 534, 942?

Answer: HCF of 904, 534, 942 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 904, 534, 942 using Euclid's Algorithm?

Answer: For arbitrary numbers 904, 534, 942 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.