Highest Common Factor of 904, 536, 841 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 904, 536, 841 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 904, 536, 841 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 904, 536, 841 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 904, 536, 841 is 1.

HCF(904, 536, 841) = 1

HCF of 904, 536, 841 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 904, 536, 841 is 1.

Highest Common Factor of 904,536,841 using Euclid's algorithm

Highest Common Factor of 904,536,841 is 1

Step 1: Since 904 > 536, we apply the division lemma to 904 and 536, to get

904 = 536 x 1 + 368

Step 2: Since the reminder 536 ≠ 0, we apply division lemma to 368 and 536, to get

536 = 368 x 1 + 168

Step 3: We consider the new divisor 368 and the new remainder 168, and apply the division lemma to get

368 = 168 x 2 + 32

We consider the new divisor 168 and the new remainder 32,and apply the division lemma to get

168 = 32 x 5 + 8

We consider the new divisor 32 and the new remainder 8,and apply the division lemma to get

32 = 8 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 8, the HCF of 904 and 536 is 8

Notice that 8 = HCF(32,8) = HCF(168,32) = HCF(368,168) = HCF(536,368) = HCF(904,536) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 841 > 8, we apply the division lemma to 841 and 8, to get

841 = 8 x 105 + 1

Step 2: Since the reminder 8 ≠ 0, we apply division lemma to 1 and 8, to get

8 = 1 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 8 and 841 is 1

Notice that 1 = HCF(8,1) = HCF(841,8) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 904, 536, 841 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 904, 536, 841?

Answer: HCF of 904, 536, 841 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 904, 536, 841 using Euclid's Algorithm?

Answer: For arbitrary numbers 904, 536, 841 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.