Highest Common Factor of 905, 666 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 905, 666 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 905, 666 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 905, 666 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 905, 666 is 1.

HCF(905, 666) = 1

HCF of 905, 666 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 905, 666 is 1.

Highest Common Factor of 905,666 using Euclid's algorithm

Highest Common Factor of 905,666 is 1

Step 1: Since 905 > 666, we apply the division lemma to 905 and 666, to get

905 = 666 x 1 + 239

Step 2: Since the reminder 666 ≠ 0, we apply division lemma to 239 and 666, to get

666 = 239 x 2 + 188

Step 3: We consider the new divisor 239 and the new remainder 188, and apply the division lemma to get

239 = 188 x 1 + 51

We consider the new divisor 188 and the new remainder 51,and apply the division lemma to get

188 = 51 x 3 + 35

We consider the new divisor 51 and the new remainder 35,and apply the division lemma to get

51 = 35 x 1 + 16

We consider the new divisor 35 and the new remainder 16,and apply the division lemma to get

35 = 16 x 2 + 3

We consider the new divisor 16 and the new remainder 3,and apply the division lemma to get

16 = 3 x 5 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 905 and 666 is 1

Notice that 1 = HCF(3,1) = HCF(16,3) = HCF(35,16) = HCF(51,35) = HCF(188,51) = HCF(239,188) = HCF(666,239) = HCF(905,666) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 905, 666 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 905, 666?

Answer: HCF of 905, 666 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 905, 666 using Euclid's Algorithm?

Answer: For arbitrary numbers 905, 666 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.