Highest Common Factor of 906, 1254, 9467 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 906, 1254, 9467 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 906, 1254, 9467 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 906, 1254, 9467 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 906, 1254, 9467 is 1.

HCF(906, 1254, 9467) = 1

HCF of 906, 1254, 9467 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 906, 1254, 9467 is 1.

Highest Common Factor of 906,1254,9467 using Euclid's algorithm

Highest Common Factor of 906,1254,9467 is 1

Step 1: Since 1254 > 906, we apply the division lemma to 1254 and 906, to get

1254 = 906 x 1 + 348

Step 2: Since the reminder 906 ≠ 0, we apply division lemma to 348 and 906, to get

906 = 348 x 2 + 210

Step 3: We consider the new divisor 348 and the new remainder 210, and apply the division lemma to get

348 = 210 x 1 + 138

We consider the new divisor 210 and the new remainder 138,and apply the division lemma to get

210 = 138 x 1 + 72

We consider the new divisor 138 and the new remainder 72,and apply the division lemma to get

138 = 72 x 1 + 66

We consider the new divisor 72 and the new remainder 66,and apply the division lemma to get

72 = 66 x 1 + 6

We consider the new divisor 66 and the new remainder 6,and apply the division lemma to get

66 = 6 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 6, the HCF of 906 and 1254 is 6

Notice that 6 = HCF(66,6) = HCF(72,66) = HCF(138,72) = HCF(210,138) = HCF(348,210) = HCF(906,348) = HCF(1254,906) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 9467 > 6, we apply the division lemma to 9467 and 6, to get

9467 = 6 x 1577 + 5

Step 2: Since the reminder 6 ≠ 0, we apply division lemma to 5 and 6, to get

6 = 5 x 1 + 1

Step 3: We consider the new divisor 5 and the new remainder 1, and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6 and 9467 is 1

Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(9467,6) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 906, 1254, 9467 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 906, 1254, 9467?

Answer: HCF of 906, 1254, 9467 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 906, 1254, 9467 using Euclid's Algorithm?

Answer: For arbitrary numbers 906, 1254, 9467 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.