Highest Common Factor of 909, 786, 881, 65 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 909, 786, 881, 65 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 909, 786, 881, 65 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 909, 786, 881, 65 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 909, 786, 881, 65 is 1.

HCF(909, 786, 881, 65) = 1

HCF of 909, 786, 881, 65 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 909, 786, 881, 65 is 1.

Highest Common Factor of 909,786,881,65 using Euclid's algorithm

Highest Common Factor of 909,786,881,65 is 1

Step 1: Since 909 > 786, we apply the division lemma to 909 and 786, to get

909 = 786 x 1 + 123

Step 2: Since the reminder 786 ≠ 0, we apply division lemma to 123 and 786, to get

786 = 123 x 6 + 48

Step 3: We consider the new divisor 123 and the new remainder 48, and apply the division lemma to get

123 = 48 x 2 + 27

We consider the new divisor 48 and the new remainder 27,and apply the division lemma to get

48 = 27 x 1 + 21

We consider the new divisor 27 and the new remainder 21,and apply the division lemma to get

27 = 21 x 1 + 6

We consider the new divisor 21 and the new remainder 6,and apply the division lemma to get

21 = 6 x 3 + 3

We consider the new divisor 6 and the new remainder 3,and apply the division lemma to get

6 = 3 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 909 and 786 is 3

Notice that 3 = HCF(6,3) = HCF(21,6) = HCF(27,21) = HCF(48,27) = HCF(123,48) = HCF(786,123) = HCF(909,786) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 881 > 3, we apply the division lemma to 881 and 3, to get

881 = 3 x 293 + 2

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 2 and 3, to get

3 = 2 x 1 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 881 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(881,3) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 65 > 1, we apply the division lemma to 65 and 1, to get

65 = 1 x 65 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 65 is 1

Notice that 1 = HCF(65,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 909, 786, 881, 65 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 909, 786, 881, 65?

Answer: HCF of 909, 786, 881, 65 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 909, 786, 881, 65 using Euclid's Algorithm?

Answer: For arbitrary numbers 909, 786, 881, 65 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.