Highest Common Factor of 909, 791, 987 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 909, 791, 987 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 909, 791, 987 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 909, 791, 987 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 909, 791, 987 is 1.

HCF(909, 791, 987) = 1

HCF of 909, 791, 987 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 909, 791, 987 is 1.

Highest Common Factor of 909,791,987 using Euclid's algorithm

Highest Common Factor of 909,791,987 is 1

Step 1: Since 909 > 791, we apply the division lemma to 909 and 791, to get

909 = 791 x 1 + 118

Step 2: Since the reminder 791 ≠ 0, we apply division lemma to 118 and 791, to get

791 = 118 x 6 + 83

Step 3: We consider the new divisor 118 and the new remainder 83, and apply the division lemma to get

118 = 83 x 1 + 35

We consider the new divisor 83 and the new remainder 35,and apply the division lemma to get

83 = 35 x 2 + 13

We consider the new divisor 35 and the new remainder 13,and apply the division lemma to get

35 = 13 x 2 + 9

We consider the new divisor 13 and the new remainder 9,and apply the division lemma to get

13 = 9 x 1 + 4

We consider the new divisor 9 and the new remainder 4,and apply the division lemma to get

9 = 4 x 2 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 909 and 791 is 1

Notice that 1 = HCF(4,1) = HCF(9,4) = HCF(13,9) = HCF(35,13) = HCF(83,35) = HCF(118,83) = HCF(791,118) = HCF(909,791) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 987 > 1, we apply the division lemma to 987 and 1, to get

987 = 1 x 987 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 987 is 1

Notice that 1 = HCF(987,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 909, 791, 987 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 909, 791, 987?

Answer: HCF of 909, 791, 987 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 909, 791, 987 using Euclid's Algorithm?

Answer: For arbitrary numbers 909, 791, 987 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.