Highest Common Factor of 91, 71, 50, 375 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 91, 71, 50, 375 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 91, 71, 50, 375 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 91, 71, 50, 375 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 91, 71, 50, 375 is 1.

HCF(91, 71, 50, 375) = 1

HCF of 91, 71, 50, 375 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 91, 71, 50, 375 is 1.

Highest Common Factor of 91,71,50,375 using Euclid's algorithm

Highest Common Factor of 91,71,50,375 is 1

Step 1: Since 91 > 71, we apply the division lemma to 91 and 71, to get

91 = 71 x 1 + 20

Step 2: Since the reminder 71 ≠ 0, we apply division lemma to 20 and 71, to get

71 = 20 x 3 + 11

Step 3: We consider the new divisor 20 and the new remainder 11, and apply the division lemma to get

20 = 11 x 1 + 9

We consider the new divisor 11 and the new remainder 9,and apply the division lemma to get

11 = 9 x 1 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 91 and 71 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(11,9) = HCF(20,11) = HCF(71,20) = HCF(91,71) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 50 > 1, we apply the division lemma to 50 and 1, to get

50 = 1 x 50 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 50 is 1

Notice that 1 = HCF(50,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 375 > 1, we apply the division lemma to 375 and 1, to get

375 = 1 x 375 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 375 is 1

Notice that 1 = HCF(375,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 91, 71, 50, 375 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 91, 71, 50, 375?

Answer: HCF of 91, 71, 50, 375 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 91, 71, 50, 375 using Euclid's Algorithm?

Answer: For arbitrary numbers 91, 71, 50, 375 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.