Highest Common Factor of 910, 3316 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 910, 3316 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 910, 3316 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 910, 3316 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 910, 3316 is 2.

HCF(910, 3316) = 2

HCF of 910, 3316 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 910, 3316 is 2.

Highest Common Factor of 910,3316 using Euclid's algorithm

Highest Common Factor of 910,3316 is 2

Step 1: Since 3316 > 910, we apply the division lemma to 3316 and 910, to get

3316 = 910 x 3 + 586

Step 2: Since the reminder 910 ≠ 0, we apply division lemma to 586 and 910, to get

910 = 586 x 1 + 324

Step 3: We consider the new divisor 586 and the new remainder 324, and apply the division lemma to get

586 = 324 x 1 + 262

We consider the new divisor 324 and the new remainder 262,and apply the division lemma to get

324 = 262 x 1 + 62

We consider the new divisor 262 and the new remainder 62,and apply the division lemma to get

262 = 62 x 4 + 14

We consider the new divisor 62 and the new remainder 14,and apply the division lemma to get

62 = 14 x 4 + 6

We consider the new divisor 14 and the new remainder 6,and apply the division lemma to get

14 = 6 x 2 + 2

We consider the new divisor 6 and the new remainder 2,and apply the division lemma to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 910 and 3316 is 2

Notice that 2 = HCF(6,2) = HCF(14,6) = HCF(62,14) = HCF(262,62) = HCF(324,262) = HCF(586,324) = HCF(910,586) = HCF(3316,910) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 910, 3316 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 910, 3316?

Answer: HCF of 910, 3316 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 910, 3316 using Euclid's Algorithm?

Answer: For arbitrary numbers 910, 3316 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.