Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 912, 587, 783 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 912, 587, 783 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 912, 587, 783 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 912, 587, 783 is 1.
HCF(912, 587, 783) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 912, 587, 783 is 1.
Step 1: Since 912 > 587, we apply the division lemma to 912 and 587, to get
912 = 587 x 1 + 325
Step 2: Since the reminder 587 ≠ 0, we apply division lemma to 325 and 587, to get
587 = 325 x 1 + 262
Step 3: We consider the new divisor 325 and the new remainder 262, and apply the division lemma to get
325 = 262 x 1 + 63
We consider the new divisor 262 and the new remainder 63,and apply the division lemma to get
262 = 63 x 4 + 10
We consider the new divisor 63 and the new remainder 10,and apply the division lemma to get
63 = 10 x 6 + 3
We consider the new divisor 10 and the new remainder 3,and apply the division lemma to get
10 = 3 x 3 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 912 and 587 is 1
Notice that 1 = HCF(3,1) = HCF(10,3) = HCF(63,10) = HCF(262,63) = HCF(325,262) = HCF(587,325) = HCF(912,587) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 783 > 1, we apply the division lemma to 783 and 1, to get
783 = 1 x 783 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 783 is 1
Notice that 1 = HCF(783,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 912, 587, 783?
Answer: HCF of 912, 587, 783 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 912, 587, 783 using Euclid's Algorithm?
Answer: For arbitrary numbers 912, 587, 783 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.