Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 914, 700 i.e. 2 the largest integer that leaves a remainder zero for all numbers.
HCF of 914, 700 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 914, 700 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 914, 700 is 2.
HCF(914, 700) = 2
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 914, 700 is 2.
Step 1: Since 914 > 700, we apply the division lemma to 914 and 700, to get
914 = 700 x 1 + 214
Step 2: Since the reminder 700 ≠ 0, we apply division lemma to 214 and 700, to get
700 = 214 x 3 + 58
Step 3: We consider the new divisor 214 and the new remainder 58, and apply the division lemma to get
214 = 58 x 3 + 40
We consider the new divisor 58 and the new remainder 40,and apply the division lemma to get
58 = 40 x 1 + 18
We consider the new divisor 40 and the new remainder 18,and apply the division lemma to get
40 = 18 x 2 + 4
We consider the new divisor 18 and the new remainder 4,and apply the division lemma to get
18 = 4 x 4 + 2
We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get
4 = 2 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 914 and 700 is 2
Notice that 2 = HCF(4,2) = HCF(18,4) = HCF(40,18) = HCF(58,40) = HCF(214,58) = HCF(700,214) = HCF(914,700) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 914, 700?
Answer: HCF of 914, 700 is 2 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 914, 700 using Euclid's Algorithm?
Answer: For arbitrary numbers 914, 700 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.