Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 915, 549, 295 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 915, 549, 295 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 915, 549, 295 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 915, 549, 295 is 1.
HCF(915, 549, 295) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 915, 549, 295 is 1.
Step 1: Since 915 > 549, we apply the division lemma to 915 and 549, to get
915 = 549 x 1 + 366
Step 2: Since the reminder 549 ≠ 0, we apply division lemma to 366 and 549, to get
549 = 366 x 1 + 183
Step 3: We consider the new divisor 366 and the new remainder 183, and apply the division lemma to get
366 = 183 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 183, the HCF of 915 and 549 is 183
Notice that 183 = HCF(366,183) = HCF(549,366) = HCF(915,549) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 295 > 183, we apply the division lemma to 295 and 183, to get
295 = 183 x 1 + 112
Step 2: Since the reminder 183 ≠ 0, we apply division lemma to 112 and 183, to get
183 = 112 x 1 + 71
Step 3: We consider the new divisor 112 and the new remainder 71, and apply the division lemma to get
112 = 71 x 1 + 41
We consider the new divisor 71 and the new remainder 41,and apply the division lemma to get
71 = 41 x 1 + 30
We consider the new divisor 41 and the new remainder 30,and apply the division lemma to get
41 = 30 x 1 + 11
We consider the new divisor 30 and the new remainder 11,and apply the division lemma to get
30 = 11 x 2 + 8
We consider the new divisor 11 and the new remainder 8,and apply the division lemma to get
11 = 8 x 1 + 3
We consider the new divisor 8 and the new remainder 3,and apply the division lemma to get
8 = 3 x 2 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 183 and 295 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(8,3) = HCF(11,8) = HCF(30,11) = HCF(41,30) = HCF(71,41) = HCF(112,71) = HCF(183,112) = HCF(295,183) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 915, 549, 295?
Answer: HCF of 915, 549, 295 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 915, 549, 295 using Euclid's Algorithm?
Answer: For arbitrary numbers 915, 549, 295 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.