Highest Common Factor of 915, 5606, 9852 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 915, 5606, 9852 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 915, 5606, 9852 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 915, 5606, 9852 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 915, 5606, 9852 is 1.

HCF(915, 5606, 9852) = 1

HCF of 915, 5606, 9852 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 915, 5606, 9852 is 1.

Highest Common Factor of 915,5606,9852 using Euclid's algorithm

Highest Common Factor of 915,5606,9852 is 1

Step 1: Since 5606 > 915, we apply the division lemma to 5606 and 915, to get

5606 = 915 x 6 + 116

Step 2: Since the reminder 915 ≠ 0, we apply division lemma to 116 and 915, to get

915 = 116 x 7 + 103

Step 3: We consider the new divisor 116 and the new remainder 103, and apply the division lemma to get

116 = 103 x 1 + 13

We consider the new divisor 103 and the new remainder 13,and apply the division lemma to get

103 = 13 x 7 + 12

We consider the new divisor 13 and the new remainder 12,and apply the division lemma to get

13 = 12 x 1 + 1

We consider the new divisor 12 and the new remainder 1,and apply the division lemma to get

12 = 1 x 12 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 915 and 5606 is 1

Notice that 1 = HCF(12,1) = HCF(13,12) = HCF(103,13) = HCF(116,103) = HCF(915,116) = HCF(5606,915) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 9852 > 1, we apply the division lemma to 9852 and 1, to get

9852 = 1 x 9852 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 9852 is 1

Notice that 1 = HCF(9852,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 915, 5606, 9852 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 915, 5606, 9852?

Answer: HCF of 915, 5606, 9852 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 915, 5606, 9852 using Euclid's Algorithm?

Answer: For arbitrary numbers 915, 5606, 9852 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.