Highest Common Factor of 918, 590, 27 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 918, 590, 27 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 918, 590, 27 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 918, 590, 27 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 918, 590, 27 is 1.

HCF(918, 590, 27) = 1

HCF of 918, 590, 27 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 918, 590, 27 is 1.

Highest Common Factor of 918,590,27 using Euclid's algorithm

Highest Common Factor of 918,590,27 is 1

Step 1: Since 918 > 590, we apply the division lemma to 918 and 590, to get

918 = 590 x 1 + 328

Step 2: Since the reminder 590 ≠ 0, we apply division lemma to 328 and 590, to get

590 = 328 x 1 + 262

Step 3: We consider the new divisor 328 and the new remainder 262, and apply the division lemma to get

328 = 262 x 1 + 66

We consider the new divisor 262 and the new remainder 66,and apply the division lemma to get

262 = 66 x 3 + 64

We consider the new divisor 66 and the new remainder 64,and apply the division lemma to get

66 = 64 x 1 + 2

We consider the new divisor 64 and the new remainder 2,and apply the division lemma to get

64 = 2 x 32 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 918 and 590 is 2

Notice that 2 = HCF(64,2) = HCF(66,64) = HCF(262,66) = HCF(328,262) = HCF(590,328) = HCF(918,590) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 27 > 2, we apply the division lemma to 27 and 2, to get

27 = 2 x 13 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 27 is 1

Notice that 1 = HCF(2,1) = HCF(27,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 918, 590, 27 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 918, 590, 27?

Answer: HCF of 918, 590, 27 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 918, 590, 27 using Euclid's Algorithm?

Answer: For arbitrary numbers 918, 590, 27 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.