Highest Common Factor of 919, 4331 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 919, 4331 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 919, 4331 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 919, 4331 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 919, 4331 is 1.

HCF(919, 4331) = 1

HCF of 919, 4331 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 919, 4331 is 1.

Highest Common Factor of 919,4331 using Euclid's algorithm

Highest Common Factor of 919,4331 is 1

Step 1: Since 4331 > 919, we apply the division lemma to 4331 and 919, to get

4331 = 919 x 4 + 655

Step 2: Since the reminder 919 ≠ 0, we apply division lemma to 655 and 919, to get

919 = 655 x 1 + 264

Step 3: We consider the new divisor 655 and the new remainder 264, and apply the division lemma to get

655 = 264 x 2 + 127

We consider the new divisor 264 and the new remainder 127,and apply the division lemma to get

264 = 127 x 2 + 10

We consider the new divisor 127 and the new remainder 10,and apply the division lemma to get

127 = 10 x 12 + 7

We consider the new divisor 10 and the new remainder 7,and apply the division lemma to get

10 = 7 x 1 + 3

We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get

7 = 3 x 2 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 919 and 4331 is 1

Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(10,7) = HCF(127,10) = HCF(264,127) = HCF(655,264) = HCF(919,655) = HCF(4331,919) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 919, 4331 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 919, 4331?

Answer: HCF of 919, 4331 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 919, 4331 using Euclid's Algorithm?

Answer: For arbitrary numbers 919, 4331 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.