Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9192, 8962 i.e. 2 the largest integer that leaves a remainder zero for all numbers.
HCF of 9192, 8962 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 9192, 8962 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 9192, 8962 is 2.
HCF(9192, 8962) = 2
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 9192, 8962 is 2.
Step 1: Since 9192 > 8962, we apply the division lemma to 9192 and 8962, to get
9192 = 8962 x 1 + 230
Step 2: Since the reminder 8962 ≠ 0, we apply division lemma to 230 and 8962, to get
8962 = 230 x 38 + 222
Step 3: We consider the new divisor 230 and the new remainder 222, and apply the division lemma to get
230 = 222 x 1 + 8
We consider the new divisor 222 and the new remainder 8,and apply the division lemma to get
222 = 8 x 27 + 6
We consider the new divisor 8 and the new remainder 6,and apply the division lemma to get
8 = 6 x 1 + 2
We consider the new divisor 6 and the new remainder 2,and apply the division lemma to get
6 = 2 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 9192 and 8962 is 2
Notice that 2 = HCF(6,2) = HCF(8,6) = HCF(222,8) = HCF(230,222) = HCF(8962,230) = HCF(9192,8962) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 9192, 8962?
Answer: HCF of 9192, 8962 is 2 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 9192, 8962 using Euclid's Algorithm?
Answer: For arbitrary numbers 9192, 8962 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.