Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 920, 675, 298 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 920, 675, 298 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 920, 675, 298 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 920, 675, 298 is 1.
HCF(920, 675, 298) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 920, 675, 298 is 1.
Step 1: Since 920 > 675, we apply the division lemma to 920 and 675, to get
920 = 675 x 1 + 245
Step 2: Since the reminder 675 ≠ 0, we apply division lemma to 245 and 675, to get
675 = 245 x 2 + 185
Step 3: We consider the new divisor 245 and the new remainder 185, and apply the division lemma to get
245 = 185 x 1 + 60
We consider the new divisor 185 and the new remainder 60,and apply the division lemma to get
185 = 60 x 3 + 5
We consider the new divisor 60 and the new remainder 5,and apply the division lemma to get
60 = 5 x 12 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 920 and 675 is 5
Notice that 5 = HCF(60,5) = HCF(185,60) = HCF(245,185) = HCF(675,245) = HCF(920,675) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 298 > 5, we apply the division lemma to 298 and 5, to get
298 = 5 x 59 + 3
Step 2: Since the reminder 5 ≠ 0, we apply division lemma to 3 and 5, to get
5 = 3 x 1 + 2
Step 3: We consider the new divisor 3 and the new remainder 2, and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5 and 298 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(298,5) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 920, 675, 298?
Answer: HCF of 920, 675, 298 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 920, 675, 298 using Euclid's Algorithm?
Answer: For arbitrary numbers 920, 675, 298 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.