Highest Common Factor of 920, 762, 188 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 920, 762, 188 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 920, 762, 188 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 920, 762, 188 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 920, 762, 188 is 2.

HCF(920, 762, 188) = 2

HCF of 920, 762, 188 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 920, 762, 188 is 2.

Highest Common Factor of 920,762,188 using Euclid's algorithm

Highest Common Factor of 920,762,188 is 2

Step 1: Since 920 > 762, we apply the division lemma to 920 and 762, to get

920 = 762 x 1 + 158

Step 2: Since the reminder 762 ≠ 0, we apply division lemma to 158 and 762, to get

762 = 158 x 4 + 130

Step 3: We consider the new divisor 158 and the new remainder 130, and apply the division lemma to get

158 = 130 x 1 + 28

We consider the new divisor 130 and the new remainder 28,and apply the division lemma to get

130 = 28 x 4 + 18

We consider the new divisor 28 and the new remainder 18,and apply the division lemma to get

28 = 18 x 1 + 10

We consider the new divisor 18 and the new remainder 10,and apply the division lemma to get

18 = 10 x 1 + 8

We consider the new divisor 10 and the new remainder 8,and apply the division lemma to get

10 = 8 x 1 + 2

We consider the new divisor 8 and the new remainder 2,and apply the division lemma to get

8 = 2 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 920 and 762 is 2

Notice that 2 = HCF(8,2) = HCF(10,8) = HCF(18,10) = HCF(28,18) = HCF(130,28) = HCF(158,130) = HCF(762,158) = HCF(920,762) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 188 > 2, we apply the division lemma to 188 and 2, to get

188 = 2 x 94 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 188 is 2

Notice that 2 = HCF(188,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 920, 762, 188 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 920, 762, 188?

Answer: HCF of 920, 762, 188 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 920, 762, 188 using Euclid's Algorithm?

Answer: For arbitrary numbers 920, 762, 188 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.