Highest Common Factor of 923, 381, 425, 174 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 923, 381, 425, 174 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 923, 381, 425, 174 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 923, 381, 425, 174 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 923, 381, 425, 174 is 1.

HCF(923, 381, 425, 174) = 1

HCF of 923, 381, 425, 174 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 923, 381, 425, 174 is 1.

Highest Common Factor of 923,381,425,174 using Euclid's algorithm

Highest Common Factor of 923,381,425,174 is 1

Step 1: Since 923 > 381, we apply the division lemma to 923 and 381, to get

923 = 381 x 2 + 161

Step 2: Since the reminder 381 ≠ 0, we apply division lemma to 161 and 381, to get

381 = 161 x 2 + 59

Step 3: We consider the new divisor 161 and the new remainder 59, and apply the division lemma to get

161 = 59 x 2 + 43

We consider the new divisor 59 and the new remainder 43,and apply the division lemma to get

59 = 43 x 1 + 16

We consider the new divisor 43 and the new remainder 16,and apply the division lemma to get

43 = 16 x 2 + 11

We consider the new divisor 16 and the new remainder 11,and apply the division lemma to get

16 = 11 x 1 + 5

We consider the new divisor 11 and the new remainder 5,and apply the division lemma to get

11 = 5 x 2 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 923 and 381 is 1

Notice that 1 = HCF(5,1) = HCF(11,5) = HCF(16,11) = HCF(43,16) = HCF(59,43) = HCF(161,59) = HCF(381,161) = HCF(923,381) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 425 > 1, we apply the division lemma to 425 and 1, to get

425 = 1 x 425 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 425 is 1

Notice that 1 = HCF(425,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 174 > 1, we apply the division lemma to 174 and 1, to get

174 = 1 x 174 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 174 is 1

Notice that 1 = HCF(174,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 923, 381, 425, 174 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 923, 381, 425, 174?

Answer: HCF of 923, 381, 425, 174 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 923, 381, 425, 174 using Euclid's Algorithm?

Answer: For arbitrary numbers 923, 381, 425, 174 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.