Highest Common Factor of 924, 568, 666 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 924, 568, 666 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 924, 568, 666 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 924, 568, 666 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 924, 568, 666 is 2.

HCF(924, 568, 666) = 2

HCF of 924, 568, 666 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 924, 568, 666 is 2.

Highest Common Factor of 924,568,666 using Euclid's algorithm

Highest Common Factor of 924,568,666 is 2

Step 1: Since 924 > 568, we apply the division lemma to 924 and 568, to get

924 = 568 x 1 + 356

Step 2: Since the reminder 568 ≠ 0, we apply division lemma to 356 and 568, to get

568 = 356 x 1 + 212

Step 3: We consider the new divisor 356 and the new remainder 212, and apply the division lemma to get

356 = 212 x 1 + 144

We consider the new divisor 212 and the new remainder 144,and apply the division lemma to get

212 = 144 x 1 + 68

We consider the new divisor 144 and the new remainder 68,and apply the division lemma to get

144 = 68 x 2 + 8

We consider the new divisor 68 and the new remainder 8,and apply the division lemma to get

68 = 8 x 8 + 4

We consider the new divisor 8 and the new remainder 4,and apply the division lemma to get

8 = 4 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 924 and 568 is 4

Notice that 4 = HCF(8,4) = HCF(68,8) = HCF(144,68) = HCF(212,144) = HCF(356,212) = HCF(568,356) = HCF(924,568) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 666 > 4, we apply the division lemma to 666 and 4, to get

666 = 4 x 166 + 2

Step 2: Since the reminder 4 ≠ 0, we apply division lemma to 2 and 4, to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 4 and 666 is 2

Notice that 2 = HCF(4,2) = HCF(666,4) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 924, 568, 666 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 924, 568, 666?

Answer: HCF of 924, 568, 666 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 924, 568, 666 using Euclid's Algorithm?

Answer: For arbitrary numbers 924, 568, 666 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.