Highest Common Factor of 9247, 6178 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9247, 6178 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 9247, 6178 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 9247, 6178 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 9247, 6178 is 1.

HCF(9247, 6178) = 1

HCF of 9247, 6178 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 9247, 6178 is 1.

Highest Common Factor of 9247,6178 using Euclid's algorithm

Highest Common Factor of 9247,6178 is 1

Step 1: Since 9247 > 6178, we apply the division lemma to 9247 and 6178, to get

9247 = 6178 x 1 + 3069

Step 2: Since the reminder 6178 ≠ 0, we apply division lemma to 3069 and 6178, to get

6178 = 3069 x 2 + 40

Step 3: We consider the new divisor 3069 and the new remainder 40, and apply the division lemma to get

3069 = 40 x 76 + 29

We consider the new divisor 40 and the new remainder 29,and apply the division lemma to get

40 = 29 x 1 + 11

We consider the new divisor 29 and the new remainder 11,and apply the division lemma to get

29 = 11 x 2 + 7

We consider the new divisor 11 and the new remainder 7,and apply the division lemma to get

11 = 7 x 1 + 4

We consider the new divisor 7 and the new remainder 4,and apply the division lemma to get

7 = 4 x 1 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9247 and 6178 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(7,4) = HCF(11,7) = HCF(29,11) = HCF(40,29) = HCF(3069,40) = HCF(6178,3069) = HCF(9247,6178) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 9247, 6178 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 9247, 6178?

Answer: HCF of 9247, 6178 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 9247, 6178 using Euclid's Algorithm?

Answer: For arbitrary numbers 9247, 6178 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.