Highest Common Factor of 926, 353 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 926, 353 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 926, 353 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 926, 353 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 926, 353 is 1.

HCF(926, 353) = 1

HCF of 926, 353 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 926, 353 is 1.

Highest Common Factor of 926,353 using Euclid's algorithm

Highest Common Factor of 926,353 is 1

Step 1: Since 926 > 353, we apply the division lemma to 926 and 353, to get

926 = 353 x 2 + 220

Step 2: Since the reminder 353 ≠ 0, we apply division lemma to 220 and 353, to get

353 = 220 x 1 + 133

Step 3: We consider the new divisor 220 and the new remainder 133, and apply the division lemma to get

220 = 133 x 1 + 87

We consider the new divisor 133 and the new remainder 87,and apply the division lemma to get

133 = 87 x 1 + 46

We consider the new divisor 87 and the new remainder 46,and apply the division lemma to get

87 = 46 x 1 + 41

We consider the new divisor 46 and the new remainder 41,and apply the division lemma to get

46 = 41 x 1 + 5

We consider the new divisor 41 and the new remainder 5,and apply the division lemma to get

41 = 5 x 8 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 926 and 353 is 1

Notice that 1 = HCF(5,1) = HCF(41,5) = HCF(46,41) = HCF(87,46) = HCF(133,87) = HCF(220,133) = HCF(353,220) = HCF(926,353) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 926, 353 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 926, 353?

Answer: HCF of 926, 353 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 926, 353 using Euclid's Algorithm?

Answer: For arbitrary numbers 926, 353 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.