Highest Common Factor of 926, 808, 423, 232 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 926, 808, 423, 232 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 926, 808, 423, 232 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 926, 808, 423, 232 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 926, 808, 423, 232 is 1.

HCF(926, 808, 423, 232) = 1

HCF of 926, 808, 423, 232 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 926, 808, 423, 232 is 1.

Highest Common Factor of 926,808,423,232 using Euclid's algorithm

Highest Common Factor of 926,808,423,232 is 1

Step 1: Since 926 > 808, we apply the division lemma to 926 and 808, to get

926 = 808 x 1 + 118

Step 2: Since the reminder 808 ≠ 0, we apply division lemma to 118 and 808, to get

808 = 118 x 6 + 100

Step 3: We consider the new divisor 118 and the new remainder 100, and apply the division lemma to get

118 = 100 x 1 + 18

We consider the new divisor 100 and the new remainder 18,and apply the division lemma to get

100 = 18 x 5 + 10

We consider the new divisor 18 and the new remainder 10,and apply the division lemma to get

18 = 10 x 1 + 8

We consider the new divisor 10 and the new remainder 8,and apply the division lemma to get

10 = 8 x 1 + 2

We consider the new divisor 8 and the new remainder 2,and apply the division lemma to get

8 = 2 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 926 and 808 is 2

Notice that 2 = HCF(8,2) = HCF(10,8) = HCF(18,10) = HCF(100,18) = HCF(118,100) = HCF(808,118) = HCF(926,808) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 423 > 2, we apply the division lemma to 423 and 2, to get

423 = 2 x 211 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 423 is 1

Notice that 1 = HCF(2,1) = HCF(423,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 232 > 1, we apply the division lemma to 232 and 1, to get

232 = 1 x 232 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 232 is 1

Notice that 1 = HCF(232,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 926, 808, 423, 232 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 926, 808, 423, 232?

Answer: HCF of 926, 808, 423, 232 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 926, 808, 423, 232 using Euclid's Algorithm?

Answer: For arbitrary numbers 926, 808, 423, 232 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.